### University Medical Center at Princeton Princeton, NJ

# **Technical Report One**

ASHRAE Standards 62.1-2007 and 90.1-2007



Prepared by:Timothy BerteottiPrepared for:Dr. Stephen TreadoDate:September 23, 2011

### Table of Contents

| Executive Summary | 3 |
|-------------------|---|
| Building Overview | 3 |

### ASHRAE Standard 62.1-2007

| Section 5             | 4 |
|-----------------------|---|
| Section 6             | 7 |
| Standard 62.1 Summary | 8 |

### ASHRAE Standard 90.1-2007

| Section 5             | 9  |
|-----------------------|----|
| Section 6             |    |
| Section 7             | 12 |
| Section 8             | 12 |
| Section 9             | 12 |
| Standard 90.1 Summary | 13 |

### Appendices

| Appendix A | 14 |
|------------|----|
| Appendix B | 19 |
| Appendix C | 21 |

### **Executive Summary**

The University Medical Center at Princeton located in Princeton NJ, is a new hospital designed to provide state-of-the-art medical care and assistance to its patients while consuming as little energy as possible The scope of this analysis is for the 6+1 story patient tower. Through analysis of ASHRAE standard 62.1 it was found that the UMCP is fully compliant with respects to natural ventilation system controls and materials. Through the analysis of ASHRAE standard 90.1 UMCP was not as compliant. All of the AHU fan motors exceed the prescribed horse power per CFM as did many of the exhaust fans. This can be attributed to the use of HEPA filters on all of the supply air lines as well as many of the exhaust lines to create a very clean and healthy interior environment. Many of the building spaces also exceeded the prescribed lighting power density. This could be to create a more alive and secure feeling while in those spaces that can often be very dismal and upsetting.

### **Building Overview**

The University Medical Center of Princeton Replacement Hospital is a new 639,000 square foot state of the art facility located in Plainsboro, New Jersey. It is to be part of a 171 acre healthcare campus located conveniently off of US route 1. The new facility is being built to fullfill furutre ocupancy needs anticipated by the University Medical Center of Princeton. The main patient tower consists of 269 single bed rooms within its six floors along with state-of-the-art treatment and tesing equipment.

The facility is designed and built with the latest and strictest codes required for the Plainsboro, NJ area. Some of the included codes are the 2006 New Jersey Edition of the IBC, the 2005 edition of the National Electric Code, the ASHRAE 90.1 2004 Commercial Energy Code, the 2006 International Energy Conservation Code, and much more. The building is being constructed in a zone that was once considered I-100 Limited Industrial. However, this is changing now that the area will be a health facility rather than the FMC (previous owner) industrial plant.

The mechanical system is large and tailored to provide clean air to all locations as well as allow for personal comfort. It consists of 17 large AHUs that provide 100 percent outside air to the entire building. Chilled water is supplied from the CUP for cooling and humidity control. Each patient room and all of the major areas of the building have their own VAV boxes with hot water reheat provided from heat exchanging using steam from the CUP. Each patient has the ability to control the temperature in their own room to make it most comfortable for the patient. The filtering system for the majority of the hospital consists of merv 14 filters along with a UV sanitizing system.

### ASHRAE 62.1-2007 Section 5

### 5.1 Natural Ventilation

The University Medical Center at Princeton (UMCP) has a mechanically designed natural ventilation system; therefore this section does not apply.

### 5.2 Ventilation Air Distribution

UMCP's mechanical ventilation system has proper controls to properly balance the air flow through each CAV and CAV boxes. The percent minimum outside air required for each space is listed in schedules found in the construction documents. These values have been found to comply with section 6 of standard 62.1.

### 5.3 Exhaust Duct Location

All exhaust air at UMCP is sucked through the ductwork from the roof thus creating a negative pressure in the duct relative to the building interior. This is in compliance with this standard.

### 5.4 Ventilation System Controls

All public spaces have a CAV box that is set to provide adequate air for cooling and ventilation. Air provided to these spaces is conditioned with adequate ventilation air as per section 6.

Each patient room in UMCP has an individually controlled VAV box with an appropriate minimum turn down for ventilation requirement. All medical spaces are provided with air via a CAV box that is properly balanced for adequate cooling. These areas are provided with 100 percent outside air, therefore meeting any ventilation requirement that falls within the cooling requirements of the space.

Therefore both types of spaces in UMCP are compliant to this section.

### 5.5 Air Stream Surfaces

All ductwork in UMCP is to comply with CADCA's ARC-2006 standard as a comparable method for mold resistance. The duct work must also comply with UL181 as well as SMACNA's "HVAC Duct Construction Standards- Metal and Fabrication" for materials and construction. UMCP is therefore compliant with section 5.5.

### 5.6 Outdoor Air Intakes

On UMCP, the roof exhaust fan discharge hood is at a 45 degree angle down, therefore there is no minimum separation distance required as per table 5-1 in ASHRAE 62.1. One return air exhaust vent is located on the first floor of the North wall of the bed tower directing the air an opposite direction than the air intake located on the West wall around the corner. Each rooftop AHU on UMCP has a triple layer roof protecting it from the elements. The louvers are to be tested in accordance with the AMCA 500-L wind driven test. Each air intake must have an aluminum ½ inch mesh to prevent birds from nesting, as well as an access door for snow removal.

#### 5.7 Local Capture of Contaminants

All possible areas of contamination (labs, imaging rooms, etc.) are exhausted directly to the roof to prevent recirculation within UMCP.

#### 5.8 Combustion Air

Fume hoods are to be placed in the kitchen area where there are combustible gases used in cooking equipment. These fumes are exhausted directly outside through roof top exhaust fans. Therefor UMCP is compliant with this section.

#### 5.9 Particulate Matter Removal

UMCP is designed with merv 6 filters are used for pre-filters as in compliance with ARI850.

#### 5.10 Dehumidification System

Humidity within the University Medical Center at Princeton is controlled by the cooling coils within the cooling system. The system is designed to create 50% relative humidity at 74 degrees Fahrenheit. The air is then reheated accordingly in the CAV and VAV boxes before it enters the space.

#### 5.11 Drain Pans

Drain pans are to be located at a low point of each coil within each AHU. Each drain pan is to be made of 16 gage 304 stainless steel. This design is in compliance with this ASHRAE standard.

#### 5.12 Finned Tube Coils and Heat Exchangers

UMCP is designed to have drain pans are located under each steam humidifier. Also the coils in every AHU are to be at least 18 inches apart to allow access for cleaning as in compliance with this section.

#### 5.13 Humidity and Water-Spray Systems

All water used in the steam humidification systems will be of a potable source. There will be no obstruction for a distance equal to or great than the absorption distance. Each humidifier is placed in the AHU prior to being conditioned by the coils. These coils are designed with drain pans as in compliance with section 5.11. Therefore the UMCP is in compliance with section 5.13.

### 5.14 Access for Inspection, Cleaning, and Maintenance

The UMCP is compliant with this section of ASHRAE standard 62.1. All equipment is designed with adequate clearance for access and maintenance. Each AHU is to have a direct access door, which is to open again high pressure and must be properly sealed.

### 5.15 Building Envelope and Interior Surfaces

The below grade walls of the UMCP consist of a waterproofing membrane and drainage panel. Above grade brick cavity walls are designed with a waterproofing membrane as well. The glass curtain wall on the south façade is designed to adequately resist moister. All duct work and plumbing is to be encased with appropriate insulation and constructed to prevent condensation.

#### 5.16 Buildings with Attached Parking Garages

The University Medical Center at Princeton does not have an attached parking garage; therefore this section is not applicable.

#### 5.17 Air Classification and Recirculation

The general administration and teaching rooms are considered class one and have recirculated air. This return air supplies a common return air duct to all three AHU in the lower level and is not re-designated. The excess air is then exhausted to the environment through a spill on the first floor. The kitchen is considered to be class three and four. All of the exhaust air from this space exits to the environment through the roof. Patient, operating, imaging, and all other rooms on the second through sixth floor are classified as class two and have dedicated exhaust systems. UMCP therefore complies with section 5.17.

*5.18 Requirements for buildings containing ETS area and ETS free area* The UMCP is an entirely smoke free environment; therefore this section is not applicable.

### Section 6

### 6.2 Ventilation Rate Procedure

The University Medical Center at Princeton complies with the minimum ventilation requirements specified in this section using the ventilation rate procedure. The analysis for this section was completed only for AHU 1,2 and 4; these air handlers are the only ones that recirculate air from the building. The remaining AHUs are 100 percent outside air, therefore they will meet the ventilation requirements by meeting the cooling load requirements. Below in table 1 is a summary of the findings for the analyzed air handling units.

| AHU | Calculated<br>Ventilation<br>Requirement | Designed<br>Maximum<br>ventilation |
|-----|------------------------------------------|------------------------------------|
| 1   | 22%                                      | 25%                                |
| 2   | 25%                                      | 50%                                |
| 4   | 18%                                      | 40%                                |

Table 1. Percent OA Summary

The mechanical drawings of the UMCP list a "Maximum Outside Air" as can be seen in table 1 as "Designed Maximum Ventilation". When completing this analysis, it was decided that if the required ventilation was less than or equal to the Maximum Outside Air, then the air handler is compliant; air handlers 1,2 and 4 are therefore compliant.

To calculate the required ventilation the following formulas from ASHRAE standard 62.1 section 6.2 were used within and excel workbook. The calculation spread sheet for all three air handlers can be found in index A.

$$V_{bz} = R_p * P_z + R_a * A_z$$
 (eq. 6-1)

Where:

 $A_z$  = zone floor area  $P_z$  = zone population

 $R_p$  = outdoor airflow rate required per person

R<sub>a</sub> = outdoor airflow rate required per unit area

The values for  $R_p$  and  $R_a$  are defined in ASHRAE standard 62.1-2007 Table 6-1.

Zone Outdoor Airflow  $V_{oz} = V_{bz}/E_z$  (eq. 6-2) The value for zone air distribution effectiveness is defined in ASHRAE standard 62.1-2007 table 6-2.

Primary Outdoor Air Fraction  $Z_p = V_{oz}/V_{pz}$  (eq. 6-5) The value V<sub>pz</sub> is the zone primary airflow

See ASHRAE table 6-3 for the values of  $E_v$ , The system ventilation efficiency.

The exhaust rates within University Medical Center at Princeton are compliant as well. Table 2 below demonstrates the exhaust rate per unit area of the commercial kitchen located on the lower level of the bed tower. As can be seen, the kitchen is very well ventilated.

| Kitchen<br>Area<br>(ft <sup>2</sup> ) | Exhaust CFM | Calculated<br>Exhaust<br>rate<br>(CFM/ft <sup>2</sup> ) | Minimu<br>required<br>exhuast rate<br>(CFM/ft <sup>2</sup> ) |
|---------------------------------------|-------------|---------------------------------------------------------|--------------------------------------------------------------|
| 3234                                  | 12000       | 3.7                                                     | 0.7                                                          |

Table 2. Ventilation Exhaust

The indoor air quality is to be measured upon completion of construction and is specified to use HEPA filters with 99.97 percent collection efficiency for 0.3-micron size or greater particles. Therefore the system design is compliant with ASHRAE standard 62.1 section 6.2.

### ASHRAE 62.1-2007 Summary

The University Medical Center at Princeton complies with the standards specified in ASHRAE 62.1. The building is specified to provide adequate, clean air to all spaces with more than the minimum required ventilation air to create a clean environment within the building. The spaces of possible contamination (labs, patient rooms, operating rooms, etc) are exhausted and resupplied with 100 percent outside air to prevent the spread of bacteria and disease. The mechanical equipment is designed with proper drainage and access. Each AHU and exhaust fan is accessible for maintenance and repairs both inside and outside the building. The exhaust rates for the kitchen, decontamination area, and imaging rooms all comply with the minimum exhaust rates as specified in this standard. Overall, UMCP is designed to not only comply with this standard but also to aid in the health and recovery of its patients.

### ASHRAE 90.1-2007 Section 5

### 5.1 Space-Conditioning Categories

The University Medical Center at Princeton located in Princeton, NJ is designated as zone 4A. This can be found using the Image-1 below or referencing table B-1 in the ASHRAE 90.1 publication.



Image 1. Climate Zone Map (<u>www.blogspot.com</u>)

### 5.4 Mandatory Provisions

The UMCP's curtain walls are designed to prevent water infiltration using various membranes, flashing and sealants. The building is also designed with a vestibule located at both ends of the concourse. These vestibules will help prevent the infiltration of unconditioned air.

### 5.5 Prescriptive Building Envelope Option

The University Medical Center at Princeton has specific specifications for the thermal properties of all materials. Table 3 below give a summary of the R<sub>total</sub> and U<sub>Factors</sub> both designed and required for various wall types, roof, and slab on grade.

|                          | Design Spe            | ecification                     | Requ                                 | uired                                  |            |
|--------------------------|-----------------------|---------------------------------|--------------------------------------|----------------------------------------|------------|
| Description              | Insulation<br>R-value | Assembly<br>U <sub>Factor</sub> | Insulation<br>Min R <sub>total</sub> | Assembly<br>Max<br>U <sub>Factor</sub> | Compliance |
| Brick on<br>Metal Stud   | 12                    | 0.039                           | 0.4                                  | 0.5                                    | Yes        |
| Glass<br>Curtain<br>Wall | 4                     | 0.13                            | 0.4                                  | 0.5                                    | Yes        |
| Roof<br>assembly         | 10                    | 0.094                           | 20                                   | 0.048                                  | NO         |
| Below<br>Grade Wall      | 10                    | 0.086                           | NR                                   | 1.14                                   | Yes        |

Table 3. Building Envelope Requirements

The majority of the building envelope designs are compliant with this standard. The roof assembly, however, is not. This calculation could be flawed. The thickness used for the rigid insulation that sits on top of the concrete roof deck was assumed as the minimum thickness of two inches. This only occurs at the drain locations and may skew the results giving a lower R-value than is actually present.

### Section 6

The building fenestration is summarized in table 4. It can be seen that the University Medical Center at Princeton does not comply with the 40 percent or less fenestration area. The large percentage is because of the south curtain wall. This curtain wall is designed to provide an adequate U<sub>Factor</sub> that is below the maximum allowed as shown in Table 3.

| Fenestration<br>Area (ft2) | Gross<br>Wall Area<br>(ft2) | Percent<br>Fenestation | Allowable<br>Percent<br>Fenestration |
|----------------------------|-----------------------------|------------------------|--------------------------------------|
| 78,871                     | 122,478                     | 64%                    | 40%                                  |

Table 4. Fenestration Percent

### 6.2 Compliance Path

The UMCP must use the mandatory provisions approach as described in section 6.4 of this standard to comply with this section.

### 6.4 Mandatory Provision Approach

The UMCP is provided with chilled water and high pressure steam from a central utility plant located on the health campus. Although this is being constructed simultaneously with the hospital, it is outside of the scope of this project; therefore equipment efficiencies are not applicable.

Each patient room in the bed tower is to be provided with a thermostat to control the temperature as to the patients liking. The common spaces throughout the hospital are supplied through CAV boxes that are set to provide conditioned air to maintain a dry bulb temperature of 74 degrees fahrenheit. All stair and elevator shafts are ventilated and contain controls that are to open during a fire or smoke alarm. Upon the sense of fire or smoke, smoke dampers within the return air ducts that are to close and the supply fans are to shut down while keeping the exhaust fans running. At this time the chilled water valve will become fully open supplying the cooling coil.

All ductwork within the hospital is to be tested for leakage compliance. Each duct must be sealed as specified in the specifications for each class (A,B, and C) of ductwork. The leakage test is to be performed and analyzed as prescribed in section 6.4.4.2 of the ASHRAE 90.1-2007 standard.

### 6.5 Fan Power Limitations

This section analyzed the power consumption of all building fans in units of horse power per CFM. A summary of the count of compliant and non-compliant fan motors is shown as table 5. This count is separated into AHU motors and fan motors. A detailed list of motors and their values can be found in appendix B at the end of this report.

|            | Compliant | Non-Compliant |
|------------|-----------|---------------|
| AHU        |           |               |
| Motors     | 0         | 18            |
| Fan Motors | 19        | 21            |

Table 5. Power Check Compliance Count

All of the air handling units exceed the limit of horse power per CFM as calculated using the equation hp < CFM \* 0.0011. The reason for this can be found in the fact that this building contains HEPA filters on all supply air ducts to increase the indoor air quality. These filters create a very large pressure drop that must be overcome by using much more powerful fan units. The fan motors listed consist mainly of exhaust fans located in various areas throughout the bed tower. Almost half of these fans are compliant to this standard. Again the likely reason for the large number of noncompliant fan motors is the use of HEPA and other high pressure drop filters used to clean the exhaust air before releasing it to the environment.

### Section 7

### 7.1 Water Heating

The University Medical Center at Princeton contains no combustion equipment to produce hot water. Instead, the Central Utility Plant located on the health campus provides high pressure steam (120 psi) which is reduced and then used in heat exchangers to produce hot water for building use. This section is therefore not applicable to this scope.

### Section 8

The University Medical Center at Princeton is specified to comply with the National Electric Code. This code specifies that voltage drop in all risers must not exceed 2 percent and the voltage drop in all branch circuits must not exceed 3 percent. This standard in comparable to section 8 of ASHRAE standard 90.1-2007; therefore the UMCP is compliant.

### Section 9

### 9.4 Mandatory Provisions

Each patient room consists of individual control of each lighting group within the room. All of the storage rooms and closets have occupancy sensors wired into the lighting control so auto shut off lights when the space is not being used. The majority of hallways and lobbies are switched at the breaker and are designed to be left on continuously.

### 9.5 Building Area Method Compliance

Because of the size of the building and the repetition of rooms from floor to floor, this method was not used to check lighting density. Instead see section 9.6 for the spacy-by-space method.

### 9.6 Space-by-Space method

The University Medical Center at Princeton contains a very repetitive floor plan as well as a large number of rooms. To simplify the lighting density calculation, a random sample of rooms were selected from levels L through 4. Floors five and six were ignored as they are identical copies to level 4. A summary count of compliant and non-compliant rooms is provided as a quick summary in Table 6. The full analysis performed is available in Appendix C at the end of this report.

| Liį       | ghting Power Densi | ity by Space  |
|-----------|--------------------|---------------|
|           | Compliant          | Non-Compliant |
| Number of |                    |               |
| Spaces    | 27                 | 19            |
|           |                    |               |

Table 6. Lighting Power Density Compliance Count

About half of spaces analyzed are compliant with the values given in ASHRAE 90.1-2007 Table 9.6.1. The non-compliant spaces were the Private Patient Room, Family Respite, Elevator Lobby, and Hold/Recovery etc. The commonality between these spaces is the type of patients, visitors, doctors, and staff will be using these spaces for many hours and/or at very late hours in the night. Because of the prolonged use of these spaces, they may have been designed to provide extra light to make the space seem very alive and awake. This design could also have been to help provide a sense of security for visitors still in the hospital late at night. The non-compliant rooms are highlighted in grey in Appendix C for easy finding. This sample of 36 rooms can be considered a good representation of the entire building because of the repetition of these spaces.

### ASHRAE 90.1-2007 Summary

The University Medical Center at Princeton may not comply with all of the prescribed requirements of this section; however it has justifications for these designs as to comply with other requirements of the building. The air handling units have oversized motors as compared to the CFM to compensate for the large pressure drop created by the HEPA filters. The chilled water and high pressure steam are created at a central utility plant on the campus and provides adequate supplies of both to meet any demands of the buildings. The wiring design and installation is to comply with the National Electric Code as comparable to the ASHRAE standard. The lighting power density of the all the spaces within the building can be assumed to have very similar results to the ones analyzes due to the repetition of spaces. UMCP is designed with energy conservation in mind as well as providing a superior environment.

# Appendix A

| Sharing:         Summer is a server by reason of the server by reason                                                                                                                                                                                                                                       |                                                                         |                          |                             |         |                 |             |          |         |          |       |            |            |    |         |       |               |           |               |                 |          |        |            |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------|-----------------------------|---------|-----------------|-------------|----------|---------|----------|-------|------------|------------|----|---------|-------|---------------|-----------|---------------|-----------------|----------|--------|------------|--|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n Description:<br>pull-down list)                                       | UMCP<br>AHU 1<br>Peak Co | poling L                    | bad     |                 |             |          |         |          |       |            |            |    |         |       |               |           |               |                 |          |        |            |  |
| Image: Spring (noticiting drivensity)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                          | Units                       |         |                 |             |          |         |          | Syste | 3          |            |    |         |       |               |           |               |                 |          |        | 5          |  |
| Long the load residuality<br>in primary plus load residuality<br>at an Dual odd on Tangle Fab.         Select from pull-down int<br>at<br>select from pull-down int<br>vide         Wat Lobby<br>select from pull-down int<br>at an Dual odd on Tangle Fab.         Select from pull-down int<br>at an Dual odd on Tangle Fab.         Select from pull-down int<br>at an Dual odd on Tangle Fab.         Select from pull-down int<br>at an Dual odd on Tangle Fab.         Select from pull-down int<br>at an Dual odd on Tangle Fab.         Select from pull-down int<br>at an Dual odd on Tangle Fab.         Select from pull-down int<br>at an Dual odd on Tangle Fab.         Select from pull-down int<br>at an Dual odd on Tangle Fab.         Select from pull-down int<br>at an Dual odd on Tangle Fab.         Select from pull-down int<br>at an Dual odd on Tangle Fab.         Select from pull-down int<br>at an Dual odd fab.         Select from pull-down int<br>at                                                                                                                                                                                                                                                                                                                                                                                             | ty)<br>ige)                                                             | U.                       | P<br>cfm<br>cfm/sf<br>cfm/p | _       | -               | 00% d       | liversit | 2       |          | 58,4  | 196<br>5.6 |            |    |         |       |               |           |               |                 |          |        |            |  |
| Spend (manp plus local noninulated<br>not, Due formap plus local noninulated<br>plus, Due formap plus local noninulated<br>not, Due formap plus local noninulated<br>noninulated noninulated<br>noninulated noninulated<br>formap plus local noninulated<br>noninulated noninulated<br>noninulated noninulated<br>formap plus local noninulated<br>noninulated noninulated<br>formap plus local noninulated<br>noninulated noninulated<br>formap plus local noninulated<br>noninulated noninulated<br>formap plus local noninulated<br>form                             |                                                                         | Zone titl                | e turns p                   | urple i | italic fo       | or critic   | al zon   | ie(s)   |          |       | 5          | Vest Lobby |    | it Lobi | by by | Corri<br>T-10 | dor<br>17 | Zones<br>Dint | -1116           |          | T-100  | urse<br>)1 |  |
| Space (simp) plus local registration<br>in Data FD Data Data (registration)         Space (simp) plus local registration)         Space (sim) plus local registration)         Space (si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Space type                                                              |                          | Select fr                   |         | ill-dow         | n list      |          |         |          |       |            | Lobbies    | c  | obbies  |       | Corri         | dors      | Cafe          | teria/fa        |          | Corrid | ors        |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         | Az                       | Select in                   | om pu   | III-dow         | /n list     |          |         |          |       |            | 4,93       |    | N       | 640   |               | 556       |               | d dinin         | 00<br>19 |        | 9325       |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         | Pz                       | ס                           | (defai  | ult vali        | ue liste    | ed; ma   | ty be o | override | den)  | Π          | 739.9      |    |         | 396   |               | 0         |               |                 | 60       |        | 0          |  |
| Transmetal<br>Intervational<br>featprivation of analyzed         5         Figure<br>Section<br>Featprivation<br>featprivation<br>featprivation<br>set al conditioned analyzed         6         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50         7/50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U'S                                                                     | VUZU                     | Select fr                   | om pu   | vop-IIr         | /n list (   | or leav  | /e blar | nk if N/ | Þ     | П          |            |    | UTI I   | 800   | Ξ             |           |               | ITU             | 510      | ITU    |            |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e of ave system return air                                              | μ                        |                             |         |                 |             |          |         |          |       |            | 75%        | 0. |         | 75%   |               | 75%       |               | 7               | 5%       |        | 75%        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ate at conditioned analyzed                                             | Ds                       | %                           |         |                 |             |          |         |          | 10    | %0         | 100%       |    | 1       | %0(   |               | 100%      |               | 10              | %0       |        | 100%       |  |
| fragply air at conditioned analyzedEpEp100%100%100%100%100%100%funder for system<br>for area<br>no aread<br>to area<br>tarsend by system (including diversity)<br>air analyzedVol<br>valles<br>dimedm100%100%100%100%100%100%100%for severity system<br>tarsend by system (including diversity)<br>area area<br>tarsend by system (including diversity)<br>air areaVol<br>valles<br>dimedm100%100%100%100%100%for severity system<br>tarsend area<br>tarsend to system<br>tarsend in spoily air at zone<br>transent for systemVol<br>valles<br>area<br>tarsend in spoily air at zone<br>tarsend in spoily air at zone<br>transent for systemVol<br>valles<br>area<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tarsend<br>tar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ned analyzed                                                            | Ez                       | Select II                   | om pu   | JII-GOM         | IN IIST     |          |         |          |       | Т          | 1.00       |    |         | 80    |               | 1.00      |               | _               | 85       |        | 1.00       |  |
| Ficiancy<br>(aurad for system)     Ev<br>vol a<br>vol a<br>vol a<br>m     Ev<br>vol a<br>m     Ev<br>vol a<br>m     1232       torar as a<br>(aurad for system)     vol a<br>vol a<br>vol a<br>m     the<br>vol a<br>m     the<br>vol a<br>m     1031       torar as a<br>(aurad for system)     vol a<br>vol a<br>m     the<br>vol a<br>m     the<br>vol a<br>m     1041       torar as a<br>(aurad for system)     vol a<br>vol a<br>m     the<br>vol a<br>m <td>Primary air fraction of supply air at conditioned analyzed</td> <td>ĥ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>100%</td> <td>0.</td> <td>10</td> <td>%00</td> <td></td> <td>100%</td> <td></td> <td>10</td> <td>0%</td> <td></td> <td>100%</td> <td></td>                                                                                                                                                                                           | Primary air fraction of supply air at conditioned analyzed              | ĥ                        |                             |         |                 |             |          |         |          |       | -          | 100%       | 0. | 10      | %00   |               | 100%      |               | 10              | 0%       |        | 100%       |  |
| Uprine for system<br>(nor ana<br>source for system)         Void<br>Void<br>(mm)         dmm         1232<br>(1232)           Ibern as a whole<br>(resign primary supply air<br>who system at conditioned analyzed<br>(resign primary supply air<br>as a fraction of primary SA<br>as a fraction of primary SA<br>as a fraction of primary SA<br>as a fraction of primary SA<br>(resign primary supply air<br>br zone         Void<br>(resign primary SA<br>(resign primary SA)<br>(resign primary SA)<br>(resi | Ventilation System Efficiency                                           | Ēv                       |                             |         |                 |             |          |         |          | 0.    | 78         |            |    |         |       |               |           |               |                 |          |        |            |  |
| Outrand<br>on several by system (including diversity)         Volus<br>Vpd         density<br>dm         Vpd         dm         22%           term as whole<br>we system at conditioned analyzed<br>inserver for system         Vpd         dm         =         VpdS         =         55410           term as whole<br>we system at condition ef analyzed<br>its zone         Vpd         dm         =         VpdS         =         55410           term as whole<br>we system at condition ef analyzed<br>its zone         Vpd         dm         =         VpdS         =         01075           tas affaction of primary SA<br>as affaction of primary at<br>its zone         Rz         dmMs         Rz         dmMs         =         0.06         0.06         0.18           typ not directly recir. from zone<br>required in supply aff to zone         Fa         =         Ep         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ' system                                                                | >>                       | cfm                         |         |                 |             |          |         |          | 129   | 32         |            |    |         |       |               |           |               |                 |          |        |            |  |
| tensor primary supply arr       Ypd       dm       ± VpdDs       ±2%         tensor       Vps dm       ± VpdDs       ± VpdDs       ± S410         wite system       Cou       dm       ± VpdDs       ± S410         is arracion of primary SA       Xs       tm       ± VpdDs       ± S410         is arracion of primary SA       Xs       tm       = VpdDs       ± S410         is arracion of primary SA       Xs       tm       = VpdDs       ± VpdDs         is arracion of primary SA       Xs       tm       = VpdDs       ± VpdDs         is arracion of primary SA       Xs       tm       = VpdDs       ± VpdDs       ± UpdDs         is arracion of primary SA       Xs       tm       = VpdDs       ± UpdDs       ± UpdDs       ± UpdDs         is arracion of primary SA       Xs       tm       = VpdEs       ± UpdEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | by system (including diversity)                                         |                          | cfm/p                       |         |                 |             |          |         |          |       | 6          |            |    |         |       |               |           |               |                 |          |        |            |  |
| Isam as a whole<br>w to system at conditioned analyzed<br>transmet for system<br>tor zone         Vps<br>mail zone<br>Raz<br>condition being analyzed<br>vou<br>vdz<br>tor zone         vms<br>Raz<br>re<br>vou<br>vdz<br>tor<br>condition being analyzed<br>vdz<br>tor<br>condition zone<br>equired in supply air to zone<br>could in primary air to zone<br>could ed by stem<br>friciency (App A Method)<br>friciency (App A Method)<br>fricincy (App A Method)<br>friciency (App A Method)<br>fricincy (App A Met                      | as a % or design primary suppry air                                     | T pa                     | GIII                        |         |                 |             |          |         |          |       | 2%         |            |    |         |       |               |           |               |                 |          |        |            |  |
| wit o system at conditioned analyzed<br>ireament for system         Vps         cfm         = VpdDs         = 56410           d as a fraction of pinnary SA         Xs         = Vou / Vps         = 10075           at zones         Raz<br>r for zone         cfm/s<br>Raz<br>Raz         cfm/s<br>cfm/s         = 10075           no caliton being analyzed)<br>treating zone         Vou / Vps         = 10075         = 10075           vou / Vps         cfm/s         = Vou / Vps         = 10075           no caliton being analyzed)<br>treating zone         Voz         cfm         = Vou / Vps         = 10075           voz form<br>by not directly resic. from zone         Fa         Fa         = Ep + (1-Ep)Er         = 10075         23140         16960         0.00         7.50           p) not directly resic. from zone         Fa         = Vz/Fz         = 1007 (100         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Detailed Calculations<br>Initial Calculations for the System as a whole |                          |                             |         |                 |             |          |         |          |       |            |            |    |         |       |               |           |               |                 |          |        |            |  |
| Jal Zones         You         Vinit         F Vou / Vps         I vou / Vps <thi th="" vou="" vps<="">         I vou / Vps         <thi td="" vou="" vps<=""><td>onditioned analyzed</td><td>Vps</td><td>ofm</td><td></td><td>VpdD:</td><td>0</td><td>2</td><td></td><td></td><td>584</td><td>110</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thi></thi>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | onditioned analyzed                                                     | Vps                      | ofm                         |         | VpdD:           | 0           | 2        |         |          | 584   | 110        |            |    |         |       |               |           |               |                 |          |        |            |  |
| Informes         Raz         crimist<br>representation         Raz crimist<br>Rpz         crimist<br>crimip         Raz crimist<br>Rpz         crimist<br>crimip         crimist<br>Rpz         crimist<br>crimip         crimist<br>Rpz         crimist<br>crimip         crimist<br>Rpz         crimist<br>crimip         crimist<br>Rpz         crimist<br>Rpz <thcrims< th="">         crimist<br/>Rpz         <thcrims< <="" td=""><td>tion of primary SA</td><td>Xs</td><td>G</td><td></td><td>Vou /</td><td>Vps</td><td>10 110</td><td></td><td>ш</td><td>0</td><td>17</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thcrims<></thcrims<>                                                                                                                                                                                                                                                                                                                                                                    | tion of primary SA                                                      | Xs                       | G                           |         | Vou /           | Vps         | 10 110   |         | ш        | 0     | 17         |            |    |         |       |               |           |               |                 |          |        |            |  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         | Raz                      | cfm/sf                      |         |                 |             |          |         |          |       |            | 0.06       | 0, | _       | 0.06  |               | 0.06      |               | 0               | 18       |        | 0.06       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         | Rpz                      | cfm/p                       |         |                 |             |          |         |          |       |            | 5.00       |    | 10 (D   | 0.00  |               | 0.00      |               | 7               | .50      |        | 0.00       |  |
| end for zone         Voz         cfm         = Voz/Ez         396         2138         33         334           ply not directly recir. from zone         Fa         =         Ep + (1-Ep)Er         =         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         | Vbz                      | ofm                         |         | Rpz P           | z + Ra      | az Az    |         | п        |       |            | 3995.7     |    | 213     | 38.4  |               | 33.4      |               | 334             | 8.0      |        | 559.5      |  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ly regire from zone                                                     | Fa                       | crm                         |         | Fn + (          | Z<br>1-En/F | Ÿ        |         |          |       |            | 1 0(       |    | , N     | 138   |               | 1 00      |               | - <sup>(3</sup> | 00 42    |        | 1 00       |  |
| Indirectly recir. from zone         Fc         =         1.22(1-Ep)(1-Er)         =         1.00         1.00         1.00           required in supply air to zone         Zd         =         Voz /Vdz         =         0.17         0.13         0.04         0.09           required in primary air to zone         Zp         =         Voz /Vpz         =         0.17         0.13         0.04         0.39           siency (App A Method)         Ev         =         (Fa + FbxS - FcZ) / Fa         =         0.17         0.13         0.04         0.39           ficiency (App A Method)         Ev         =         (Fa + FbxS - FcZ) / Fa         =         0.76         1.00         1.05         1.13         0.78           ficiency (Table 6.3 Method)         Ev         =         min (Evz)         =         0.76         1.00         1.05         1.13         0.78           fication of primary SA         Y         =         Vol / Vps         =         12932         1.02         1.05         1.13         0.78           fraction of primary SA (Table 6.3 Method)         Vr         =         Vol / Vps         =         1.2316         0.23         1.316         1.55         1.55         1.55         1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c                                                                       | Fb                       |                             |         | <del>በ</del> የ  |             | !        |         | Ш        |       |            | 1.00       | 0. |         | 1.00  |               | 1.00      |               | <u> </u>        | 00       |        | 1.00       |  |
| Construction         Construction<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         | 7d<br>Zd                 |                             |         | 1-(1-E          | z)(1-E      | p)(1-E   | Ľ,      |          |       |            | 1.00       | 10 | ~ -     | 1.00  |               | 1.00      |               | o -             | 39       |        | 1.00       |  |
| Jeincy (App A Method)       Evz       =       (Fa + FbXs - FcZ) / Fa       =       1.00       1.05       1.13       0.78         fficiency (App A Method)       Ev       =       min (Evz)       =       0.78       0.78         fficiency (Table 6.3 Method)       Ev       =       min (Evz)       =       0.78       0.76         fficiency (Table 6.3 Method)       Ev       =       Value from Table 6.3       =       0.76         fficiency (Table 6.3 Method)       Vot       cfm       =       Vou / Ev       =       12932         fraction of primary SA       Y       =       Vol / Vps       =       0.23         vides all cooling       Vot       cfm       =       Vol / Vps       =       0.23         vides all cooling       Y       =       Vol / Vps       =       0.23         vides all cooling       Deg F       =       (Tp-dTsf)-(1-Y)*(Tr+dTr1       =       -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | required in primary air to zone                                         | Zp                       |                             |         | Voz /           | Vpz         |          |         | п        |       |            | 0.1        | 7  | _       | 0.13  |               | 0.04      |               | 0               | .39      |        | 0.06       |  |
| ethod)         Ev         =         min (Evz)         =           3 Method)         Ev         =         Value from Table 6.3         =           3 Method)         Ev         =         Value from Table 6.3         =           SA         Y         =         Vot / Ev         =           stem (Table 6.3 Method)         Vot         cfm         =         Vot / Vps         =           SA (Table 6.3 Method)         Vot         cfm         =         Vot / Vps         =           SA (Table 6.3 Method)         V         cfm         =         Vot / Vps         =           SA (Table 6.3 Method)         Y         =         Vot / Vps         =           SA (Table 6.3 Method)         Y         =         Vot / Vps         =           SA (Table 6.3 Method)         Y         =         Vot / Vps         =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ciency (App A Method)                                                   | Evz                      |                             |         | (Fa+            | FbXs        | - FcZ)   | /Fa     | н        |       |            | 1.00       | 0  | 4       | 1.05  |               | 1.13      |               | 0               | .78      |        | 1.11       |  |
| Item         Vot         cfm         =         Vot / Ev         =           SA         Y         =         Vot / Vps         =         =           tem (Table 6.3 Method)         Vot         cfm         =         Vot / Vps         =           SA (Table 6.3 Method)         Y         =         Vot / Vps         =         =           SA (Table 6.3 Method)         Y         =         Vot / Vps         =         =           Iminimum         Deg F         =         {(Tp-dTsf)-(1-Y)*(Tr+dTrl         =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         | <b>P P</b>               |                             |         | min (E<br>Value | from        | fable (  | 0<br>   |          | 0 0   | 78<br>76   |            |    |         |       |               |           |               |                 |          |        |            |  |
| tem Vot cm = Vou / Ev =<br>SA Y = Vot / Vps =<br>tem (Table 6.3 Method) Vot cfm = Vou / Ev =<br>SA (Table 6.3 Method) Y = Vot / Vps =<br>nhinimum Deg F = {(Tp-dTsf)-(1-Y)*(Tr+dTrf =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |                          | •                           |         |                 | 1           |          |         |          |       |            |            |    |         |       |               |           |               |                 |          |        |            |  |
| tem (Table 6.3 Method) Vot cfm = Vou / Ev<br>SA (Table 6.3 Method) Y = Vot / Vps =<br>Ninimum Deg F = {(Tp-dTsf)-(1-Y)*(Tr+dTrf =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                         | Y ot                     | ctm                         |         | Vot //          | /ns         |          |         |          | 129   | 22         |            |    |         |       |               |           |               |                 |          |        |            |  |
| SA (Table 6.3 Method) Y = Vot/Vps =<br>ninimum Deg F = {(Tp-dTst)-(1-Y)*(Tr+dTrl =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         | Vot                      | cfm                         |         | Vou /           | 2           |          |         | S II     | 133   | 16         |            |    |         |       |               |           |               |                 |          |        |            |  |
| ninimum Deg F = {(Tp-dTsf)-(1-Y)*(Tr+dTrt =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SA (Table 6.3 Method)                                                   | 4                        |                             |         | VOT / V         | /ps         |          |         | ü        | c     | 23         |            |    |         |       |               |           |               |                 |          |        |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OAT below which OA Intake flow is @ minimum                             |                          | Deg F                       |         | {(Tp-o          | Tsf)-(      | 1-Y)*(1  | [r+dTr  |          |       | ц          |            |    |         |       |               |           |               |                 |          |        |            |  |

| Building:<br>System Tag/Name:<br>Operating Condition Description:<br>Units (select from pull-down list)                                                                                                                                                                                                             | UMCP<br>AHU 1<br>Peak C                | UMCP<br>AHU 1<br>Peak Cooling Load<br>IP | oad                                                         |              |                                                 |                           |       |                  |             |                 |                    |               |              |              |               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------|-------------------------------------------------------------|--------------|-------------------------------------------------|---------------------------|-------|------------------|-------------|-----------------|--------------------|---------------|--------------|--------------|---------------|
| Inputs for System<br>Floor area served by system<br>Population of area served by system (including diversity)<br>Design primary supply fan airflow rate<br>OA redd per unit area for system (Weighted average)<br>OA redd per unit area for system area (Weighted average)<br>Inputs for Potentially Critical zones | Name<br>As<br>Ps<br>Vpsd<br>Ras<br>Rps | Units<br>sf<br>cfm<br>cfm/sf<br>cfm/sf   | 100% diversity                                              | Sya          | System<br>11299<br>178<br>15,050<br>0.15<br>7,0 |                           |       |                  |             |                 |                    |               |              |              | Potentially C |
| Zone Name                                                                                                                                                                                                                                                                                                           |                                        |                                          |                                                             |              |                                                 | Offices Conference        |       | EKG/Holt Co      | Cor/Storage | Cardiac         | Work Area          | Exam Room     | Meds Storage | EEG          | Electrode     |
| Zone Tag                                                                                                                                                                                                                                                                                                            | Zone t                                 | tie turns j                              | Zone title turns purple italic for critical zone(s)         |              | -                                               | T.1129,                   | +     | T.1134           |             | Rehab<br>D.1231 |                    |               |              |              | Attach        |
|                                                                                                                                                                                                                                                                                                                     |                                        |                                          |                                                             |              | 0                                               | Office space Conference/m | -     | University/col ( | Storage     | Daycare L       | University/col     | Bank          | Pharmacy     | Pharmacy     | Pharmacy      |
| Space type                                                                                                                                                                                                                                                                                                          |                                        | Colort                                   | form null-down list                                         |              |                                                 |                           |       |                  | rooms       | 150             | lege               | vaults/safe   | (prep. area) | (prep. area) | (prep. area)  |
| Floor Area of zone                                                                                                                                                                                                                                                                                                  | Az                                     | sf                                       | St                                                          |              |                                                 | 170                       | 593   | 132              | 286         |                 | aboratories<br>657 | 000000<br>372 | 404          | 504          |               |
| Design population of zone                                                                                                                                                                                                                                                                                           | Pz                                     | σ,                                       | (default value listed; may be overridden)                   | verridder    | Ĵ                                               |                           |       | 3,3              | 0           | -               | 16.425             | 1.86          | 4.04         | 5.04         |               |
| Design total supply to zone (primary plus local recirculated)<br>Induction Terminal Unit, Dual Fan Dual Duct or Transfer Fan?                                                                                                                                                                                       | VOZO                                   | Select f                                 | crm<br>Select from pull-down list or leave blank if N/A     | k if N/A     | -                                               | 450                       | 440   | 170 440          | ITU         | ITU             | ITU /30            | ULD DDU       | 010          | UTU DBU      | ITU IZO       |
| Local recirc, air % representative of ave system return air                                                                                                                                                                                                                                                         | ų                                      |                                          |                                                             | 12102120120  |                                                 | 75%                       | 75%   | 75%              | 75%         | 75%             | 75%                | 75%           | 75%          | 75%          | Π             |
| Inputs for Operating Condition Analyzed                                                                                                                                                                                                                                                                             | 2                                      | 8                                        |                                                             | 1            | -                                               | ]                         |       |                  | -           |                 |                    | -             |              |              |               |
| Percent of total design airflow rate at conditioned analyzed<br>Air distribution type at conditioned analyzed                                                                                                                                                                                                       | Ds                                     | Splart 1                                 | %<br>Select from null-down list                             | Γ            | 100%                                            | 100%                      | 100%  | 100%             | 100%        | 100%            | 100%               | 100%          | 100%         | 100%         | 100%          |
| Zone air distribution effectiveness at conditioned analyzed                                                                                                                                                                                                                                                         | 1                                      |                                          |                                                             |              | П                                               |                           | 1.00  | 1.00             | 1.00        | 1.00            | 1.00               | 1.00          | 1.00         | 1.00         |               |
| Results                                                                                                                                                                                                                                                                                                             | 6                                      |                                          |                                                             |              |                                                 |                           |       |                  |             |                 |                    |               |              |              |               |
| Outdoor air intake required for system                                                                                                                                                                                                                                                                              | < r                                    | đm                                       |                                                             | 10           | 3765                                            |                           |       |                  |             |                 |                    |               |              |              |               |
| Outdoor air per unit floor area                                                                                                                                                                                                                                                                                     |                                        | cfm/sf                                   |                                                             |              | 0.33                                            |                           |       |                  |             |                 |                    |               |              |              |               |
| Outdoor air per person served by system (including diversity)<br>Outdoor air as a % of design primary supply air                                                                                                                                                                                                    | Ypd                                    | dun/b                                    |                                                             |              | 25%                                             |                           |       |                  |             |                 |                    |               |              |              |               |
| Detailed Calculations<br>Initial Calculations for the System as a whole                                                                                                                                                                                                                                             |                                        |                                          |                                                             |              |                                                 |                           |       |                  |             |                 |                    |               |              |              |               |
| Primary supply air flow to system at conditioned analyzed                                                                                                                                                                                                                                                           | Vps                                    | ďm                                       |                                                             |              | 15050                                           |                           |       |                  |             |                 |                    |               |              |              |               |
| UncorrectedOA requirement for system                                                                                                                                                                                                                                                                                | NoA Voi                                | đm                                       | = Rps Ps + Ras As<br>= Voi / Voe                            |              | 2923                                            |                           |       |                  |             |                 |                    |               |              |              |               |
| Initial Calculations for individual zones                                                                                                                                                                                                                                                                           |                                        |                                          |                                                             | 1971<br>1972 | 100 A                                           |                           |       |                  |             |                 |                    |               |              |              |               |
| OA rate per unit area for zone                                                                                                                                                                                                                                                                                      | Raz                                    | dm/s                                     |                                                             |              |                                                 | 5 00<br>0.05              | 88    | 10.18            | 0.12        | 10,18           | 0.18               | 0.08          | 0,18         | 81.0         |               |
| Total supply air to zone (at condition being analyzed)                                                                                                                                                                                                                                                              | Vdz                                    | dm                                       |                                                             |              |                                                 |                           | 440   | 440              | 1310        | 1310            | 730                | 850           | 610          | 560          | 720           |
| Unused OA req'd to breathing zone                                                                                                                                                                                                                                                                                   | Vbz                                    | đm                                       |                                                             |              |                                                 |                           | 183,8 | 56.8             | 34.3        | 391.3           | 282.5              | 31.6          | 92.9         | 115.9        |               |
| Unused UA requirement for zone<br>Fraction of zone surphy not directly recirc. from zone                                                                                                                                                                                                                            | Fa                                     | dm                                       | = Voz/ez<br>= Eo + (1-Eo)Er                                 |              |                                                 |                           | 8 4   | 1 00             | -<br>8 %    | 1 00            | 1 00               | 1 00          | 1 00         | 1 00         |               |
| Fraction of zone supply from fully mixed primary air                                                                                                                                                                                                                                                                | Ð                                      |                                          |                                                             |              |                                                 |                           | 1.00  | 1.00             | 1.00        | 1.00            | 1.00               | 1.00          | 1.00         | 1.00         |               |
| Fraction of zone OA not directly recirc. from zone                                                                                                                                                                                                                                                                  | Fc                                     |                                          |                                                             |              |                                                 | 1.00                      | 1.00  | 1.00             | 1.00        | 1.00            | 1.00               | 1.00          | 1.00         | 1.00         |               |
| Unused OA fraction required in supply air to zone<br>Unused OA fraction required in primary air to zone                                                                                                                                                                                                             | 20                                     |                                          | = Vaz / Vaz                                                 |              |                                                 |                           | 0.42  | 013              | 0.03        | 0.30            | 6E 0<br>#C 0       | 0.05          | 0.15         | 0.21         |               |
| System Ventilation Efficiency                                                                                                                                                                                                                                                                                       |                                        |                                          |                                                             |              |                                                 |                           |       |                  |             |                 |                    |               |              |              |               |
| Zone Ventilation Efficiency (App A Method)                                                                                                                                                                                                                                                                          | Evz                                    |                                          |                                                             |              | 010                                             | 1.16                      | 0.78  | 1,07             | 1.17        | 0.90            | 0.81               | 1.15          | 1.04         | 0.99         | 1.04          |
| System Ventilation Efficiency (App A Method)<br>Ventilation System Efficiency (Table 6.3 Method)                                                                                                                                                                                                                    | <b>9</b> 9                             |                                          | <ul> <li>min (Evz)</li> <li>Value from Table 6.3</li> </ul> |              | 0.78                                            |                           |       |                  |             |                 |                    |               |              |              |               |
| Minimum outdoor air intake airflow                                                                                                                                                                                                                                                                                  |                                        |                                          |                                                             |              |                                                 |                           |       |                  |             |                 |                    |               |              |              |               |
| Outdoor Air Intake Flow required to System                                                                                                                                                                                                                                                                          | Vot                                    | dm                                       | = Vou / Ev                                                  |              | 3765                                            |                           |       |                  |             |                 |                    |               |              |              |               |
| OA intake req'd as a fraction of primary SA                                                                                                                                                                                                                                                                         | ~                                      | ł                                        | = Vot / Vps                                                 |              | 0.25                                            |                           |       |                  |             |                 |                    |               |              |              |               |
| Outdoor Air Intake How required to System (Lable 5.3 Method), vot<br>OA intake regid as a fraction of mimary SA (Table 6.3 Method). V                                                                                                                                                                               |                                        | cim                                      | = Vot / Vos                                                 |              | 2885                                            |                           |       |                  |             |                 |                    |               |              |              |               |
| OA Temp at which Min OA provides all cooling                                                                                                                                                                                                                                                                        |                                        |                                          |                                                             |              | (contract)                                      |                           |       |                  |             |                 |                    |               |              |              |               |
| OAT below which OA Intake flow is @ minimum                                                                                                                                                                                                                                                                         |                                        | Deg F                                    | = ((Tp-dTsf)-(1-Y)*(Tr+dTr                                  |              | ь                                               |                           |       |                  |             |                 |                    |               |              |              |               |

| Building:<br>System Tag/Name:<br>Operating Condition Description:<br>Units (select from pull-down list)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UMCP<br>AHU 1<br>Peak Cooling Load<br>IP | oling Loa         | ad                                                      |                 |                          |      |                          |                |                          |                          |      |             |               |                          |                          | 8            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------|---------------------------------------------------------|-----------------|--------------------------|------|--------------------------|----------------|--------------------------|--------------------------|------|-------------|---------------|--------------------------|--------------------------|--------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | F                 |                                                         | et              | <u> </u>                 |      |                          |                |                          |                          |      |             |               |                          |                          | 200          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R                                        | units<br>sf       | 4 MAL diversity                                         | System<br>11299 | 199<br>199               |      |                          |                |                          |                          |      |             |               |                          |                          |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | dm/sf             | Anna Anna                                               | 15,050          | 15                       |      |                          |                |                          |                          |      |             |               |                          |                          |              |
| Inputs for Potentially Critical zones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | edu -                                    | dauters           |                                                         | Γ               | ritical Zones            | ones |                          |                |                          |                          |      |             |               |                          |                          |              |
| Zone Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Zone title                               | turns pur         | Zone title turns purple italic for critical zone(s)     |                 | Echo                     |      | EKG<br>Work/Cardio       | Phlabotomy     | Work Area                | Interview                |      | X-Ray C     | ator Lobby    | Nurse                    | Stress Test              | Office       |
| Zone Tag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                   |                                                         |                 |                          | _    |                          |                |                          |                          | _    |             |               |                          |                          |              |
| Soace Wpe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                   |                                                         |                 | Pharmacy<br>(prep. area) |      | Pharmacy<br>(prep. area) | University/col | Pharmacy<br>(prep. area) | Pharmacy<br>(prep. area) |      | Pharmacy Lo | Lobbies/prefu | Pharmacy<br>(prep. area) | Pharmacy<br>(prep. area) | Office space |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | select fro        | Select from pull-down list                              |                 | 4                        | -    |                          | laboratories   | W                        |                          |      |             |               |                          | 10-0-0                   |              |
| Plaar Area or zone<br>Design population of zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pz Pz                                    |                   | (default value listed; may be overridden)               | erridden)       |                          | 69.G | 7.4                      | 16,3           | 8.37                     |                          | 400  | 2.3         | 24.72         | 6.48                     | 96.6<br>CRR              | 4.44         |
| Design total supply to zone (primary plus local recirculated)<br>Induction Terminal Unit, Dual Fan Dual Duct or Transfer Fan?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vdzd                                     | dfm<br>Select fro | cfm<br>Select from pull-down list or leave blank if N/A | INA             | 1                        | 1310 | ITU 440                  | ITU 830        | 110 880                  | 3                        | 900  | 420         | 170 700       | 170 700                  | 1TU 980                  | 170 670      |
| of ave system return air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ē                                        | CELAND, MENN      |                                                         | 100000          |                          | 75%  | 75%                      | 75%            | 75%                      |                          | 75%  | 75%         | 75%           | 75%                      | 75%                      | 75%          |
| Percent of total design airflow rate at conditioned analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ds 9                                     | *                 |                                                         | 10              | 100%                     | 100% | 100%                     | 100%           | 100%                     |                          | %00  | 100%        | 100%          | 100%                     | 100%                     | 100%         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | select fro        | Select from pull-down list                              |                 | T                        | 100  | 100                      | 1.00           | 1 00                     |                          | 1:00 | 100         | 1 CS          | 1 00                     | 100                      | 100          |
| Primary air fraction of supply air at conditioned analyzed 1 Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ep                                       |                   |                                                         |                 |                          | 100% | 100%                     |                | 100%                     |                          | 100% | 100%        | 100%          | 100%                     | 100%                     | 100%         |
| Ventilation System Efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ev                                       |                   |                                                         | 0               | 78                       |      |                          |                |                          |                          |      |             |               |                          |                          |              |
| Outdoor air intake required for system Outdoor air per unit floor area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vot/As o                                 | cfm               |                                                         | 37              | 3765                     |      |                          |                |                          |                          |      |             |               |                          |                          |              |
| ling diversity)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$                                       | cfm/p             |                                                         | Ņ               | 21.1                     |      |                          |                |                          |                          |      |             |               |                          |                          |              |
| Outdoor air as a % or design primary supply air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rpa o                                    | cim               |                                                         | ~               | W.07                     |      |                          |                |                          |                          |      |             |               |                          |                          |              |
| Detailed Calculations<br>Initial Calculations for the System as a whole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                   |                                                         |                 |                          |      |                          |                |                          |                          |      |             |               |                          |                          |              |
| onditioned analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | đm                |                                                         |                 | 15050                    |      |                          |                |                          |                          |      |             |               |                          |                          |              |
| Uncorrected OA regd as a fraction of primary SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Xs o                                     | CI III            | <ul> <li>Mpa Pa + Kas Ma</li> <li>Vou / Vps</li> </ul>  |                 | 0.19                     |      |                          |                |                          |                          |      |             |               |                          |                          |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | finite            |                                                         |                 |                          | 2    | 0                        |                | 2 42                     |                          | 0 18 | 0 12        | 0.02          | 0 18                     | 0.48                     | 20.02        |
| OA rate per person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          | d/m/p             |                                                         |                 |                          | 5.00 | 5.00                     |                | 5.00                     |                          | 5.00 | 5.00        | 7.50          | 5.00                     | 5.00                     | 5.00         |
| n being analyzed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | dm                |                                                         | 9               |                          | 1310 | 440                      |                |                          |                          | 900  | 420         | 700           | 700                      | 086                      | 670          |
| Unused OA requirement for zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | dm a              | = Kpz Pz + Kaz Az<br>= Vbz/Ez                           |                 |                          | 131  | 170.2                    |                | 193                      |                          | 92   | 53<br>A 70  | 235           | 149.0                    | 229                      | 75           |
| y recirc. from zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                   | = Ep + (1-Ep)Er                                         |                 |                          | 1.00 | 1.00                     |                | 1.00                     | 1000                     | 1.00 | 1.00        | 1.00          | 1.00                     | 1.00                     | 1.00         |
| Hr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                       |                   |                                                         |                 |                          | 1.00 | 1.00                     |                | 1.00                     |                          | 1.00 | 1.00        | 1.00          | 1.00                     | 1.00                     | 1.00         |
| Fraction of zone UA not directly redition zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zd                                       |                   | = 1-(1-EZ)(1-ED)(1-ET)<br>= Voz / Vdz                   |                 |                          | 0.10 | 0.39                     |                | 0.22                     |                          | 0.10 | 0.13        | 0.34          | 0.21                     | 0.23                     | 0.11         |
| Ð                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                        |                   | = Voz / Vpz                                             |                 |                          | 0.10 | 0.39                     | 0.34           | 0.22                     |                          | 0.10 | 0.13        | 0.34          | 0.21                     | 0.23                     | 0.11         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TI<br>S                                  |                   | = (Fa + FhXs - Fc7) / Fa                                |                 |                          | 100  | 0.81                     | 0.96           | 0 98                     |                          | 1 09 | 1 07        | 744 (1        | 0 282                    | 28                       | 1 08         |
| System Ventilation Efficiency (App A Method)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P.                                       |                   | = min (Evz)                                             |                 | 78                       | 1.00 | 0.01                     |                | 0.00                     |                          | 1.40 | 1001        | 0.00          |                          |                          | 1.00         |
| oy (Table 6.3 Method)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>۳</u> :                               |                   |                                                         |                 | 0.73                     |      |                          |                |                          |                          |      |             |               |                          |                          |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                   |                                                         |                 |                          |      |                          |                |                          |                          |      |             |               |                          |                          |              |
| uired to System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | q                                        | dm                | = Vou / Ev                                              |                 | 3765                     |      |                          |                |                          |                          |      |             |               |                          |                          |              |
| Outdoor Air Intake Flow required to System (Table 6.3 Method) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                   | <ul> <li>Vou / Ev</li> </ul>                            |                 | 2002                     |      |                          |                |                          |                          |      |             |               |                          |                          |              |
| OA intake req'd as a fraction of primary SA (Table 6.3 Method) Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                   | = Vot / Vps                                             |                 | 0.27                     |      |                          |                |                          |                          |      |             |               |                          |                          |              |
| OA Temp at which Min OA provides all cooling<br>OAT below which OA intake flow is m minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                        | Deg F             | = {/To-dTsf)-(1-Y)*/Tr+dTr                              |                 | b. :                     |      |                          |                |                          |                          |      |             |               |                          |                          |              |
| CONTRACTOR INTO A PARTY OF THE |                                          |                   | transfer fair house and the                             |                 | 4                        |      |                          |                |                          |                          |      |             |               |                          |                          |              |

(ID-01%)-(1-Y)"(I7+0)

|                                                                   | -                                             | - 10                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | _                                          | 10                            |                                                    |                                                   |                                                    |                                                      |                                                       |                                |                                   |                                                        |                    |                                | -                                        |                                                  | _                                    |                                                           |                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | _                                                            |                                   |                                        | 17   |                                                            |                                                             | _                                             |                                                              | -1                                      | _                                                                                                                           |                                                               |                                           |                    |                            |              |          |                                                     | 1                                     |                                                        |                                                      |                                        |                             | 1-                | _                                               | -                                  |                                  | 0.77                          | 1 |
|-------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------|-------------------------------|----------------------------------------------------|---------------------------------------------------|----------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|--------------------------------|-----------------------------------|--------------------------------------------------------|--------------------|--------------------------------|------------------------------------------|--------------------------------------------------|--------------------------------------|-----------------------------------------------------------|------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|-----------------------------------|----------------------------------------|------|------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|--------------------|----------------------------|--------------|----------|-----------------------------------------------------|---------------------------------------|--------------------------------------------------------|------------------------------------------------------|----------------------------------------|-----------------------------|-------------------|-------------------------------------------------|------------------------------------|----------------------------------|-------------------------------|---|
| Outdoor Air Intake Flow required to System (Table 6.3 Method) Vot | Ov listent red o as a traction of building ov | OA intaka ran'i as a frantine of primary SA | Outdoor Air Intaka Flow required to System | venuevo organicative at the state of the sta | Constant ventilation Entitleticy (App A Method) | Zone Ventilation Ethiciency (App A Method) | System Ventilation Efficiency | Unused OA fraction required in primary air to zone | Unused OA fraction required in supply air to zone | Fraction of zone OA not directly recirc. from zone | Fraction of zone supply from fully mixed primary air | Fraction of zone supply not directly rearc. from zone | Unused UA requirement for zone | Unused UA regid to breathing zone | Total supply air to zone (at condition being analyzed) | OA rate per person | OA rate per unit area for zone | hitial Calculations for individual zones | Uncorrected OA regid as a fraction of primary SA | UncorrectedOA requirement for system | Primary supply air flow to system at conditioned analyzed | initial Calculations for the System as a whole | Detailed Calculations | the fullying families in a so as in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dutrinor air as a % of rission mimary sumity air | Outdoor air per ann non anna by system (including diversity) | Outdoor air mane regenere ageient | Duttion air intake required for exetem |      | Primary air fraction of supply air at conditioned analyzed | Zone air distribution effectiveness at conditioned analyzed | Air distribution type at conditioned analyzed | Percent of total design airflow rate at conditioned analyzed | Inputs for Operating Condition Analyzed | Induction Terminal Unit, Uval Fan Uval Duct or Transfer Fanir<br>Local regime air % regresentative of ave system return air | Design total supply to zone (primary plus local recirculated) | Design population of zone                 | Floor Area of zone | addi averde                |              | Zone Tag | Zone Name                                           | Inputs for Potentially Critical zones | OA req'd per person for system area (Weighted average) | OA regid per unit area for system (Weighted average) | Design normany supply fan aliffinwigde | Floor area served by system | Inputs for System | 가는 가지 않는 것 같은 것 같 | Units (select from pull-down list) | Operating Condition Description: | Building:<br>System Tap/Mamer |   |
| and                           |                                               | < 44                                        | Vot                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                               | EVZ                                        | ŝ                             | Zp                                                 | Zđ                                                | Fo                                                 | Đ                                                    | 10                                                    | Voz                            | ZQA                               | Vdz                                                    | Rpz                | Raz                            |                                          | ×s                                               | Vou                                  | Vps                                                       |                                                |                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vind                                             | VotiPs                                                       | VotiAs                            |                                        | 7    | Ę                                                          | Ę                                                           |                                               | S                                                            | C                                       | Ţ                                                                                                                           | VOZO                                                          | Pz                                        | Az                 |                            |              |          | Zone ti                                             |                                       | Rps                                                    | Ras                                                  | Vnsd                                   | D AS                        | Name              |                                                 | IP                                 | Peak C                           | UMCP                          |   |
|                                                                   |                                               | 1000                                        | dim                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                            |                               |                                                    |                                                   |                                                    |                                                      |                                                       | dm                             | dm                                | dm                                                     | dunip              | dm/st                          |                                          |                                                  | đm                                   | dm                                                        |                                                |                       | Contra Co |                                                  |                                                              |                                   | nfm                                    |      |                                                            |                                                             | Select I                                      | *                                                            |                                         | Daiac                                                                                                                       | Cim Cim                                                       | 10                                        | 92                 | Select                     |              | 10000    | tie turns                                           |                                       | cfm/p                                                  | dm/sf                                                | 3                                      | 0 93                        | Units             |                                                 |                                    | Peak Cooling Load                |                               |   |
| = Vou / Ev                                                        |                                               |                                             | = Vou / Ev                                 | Value Hold Table G.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | = (Fa+FbXs-FcZ)/Fa                         |                               | = Voz / Vpz                                        | = Voz / Vdz                                       |                                                    |                                                      | = Ep + (1-Ep)Er                                       |                                | = Hpz Pz + Kaz Az                 | F .                                                    |                    |                                |                                          | = Vou / Vps                                      |                                      | = VpdDs                                                   |                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                              |                                   |                                        |      |                                                            |                                                             | Select from pull-down list                    |                                                              |                                         | Select from pull-down list of leave plank if NA                                                                             | from pull-down list or leave black                            | (default value listed; may be overridden) |                    | Select from pull-down list |              |          | Zone title turns purple italic for critical zone(s) |                                       |                                                        |                                                      | Alle la Allo (scori)                   | 400st dispersity            |                   |                                                 |                                    | oad                              |                               |   |
|                                                                   |                                               |                                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                            |                               |                                                    |                                                   | "                                                  |                                                      |                                                       | 1                              |                                   |                                                        |                    |                                |                                          |                                                  |                                      | #<br>64                                                   |                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                              |                                   | 2                                      |      |                                                            |                                                             |                                               |                                                              |                                         | CIN INIT                                                                                                                    | I H NUA                                                       | remidden                                  |                    |                            |              |          |                                                     |                                       |                                                        |                                                      |                                        |                             | Sys               | 1                                               |                                    |                                  |                               |   |
| 6129                                                              | U. 10                                         | 0.48                                        | 6361                                       | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.70                                            | -                                          |                               |                                                    |                                                   |                                                    |                                                      |                                                       |                                |                                   |                                                        |                    |                                |                                          | 0.12                                             | 4421                                 | 35730                                                     |                                                |                       | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18%                                              | 22.3                                                         | 0.28                              | 0.70                                   | 0 40 | -                                                          |                                                             |                                               | 100%                                                         |                                         | Т                                                                                                                           | Т                                                             | ī                                         |                    |                            | - 60         |          |                                                     | -                                     | 6.6                                                    | 0.11                                                 | 35 730                                 | COURC                       | System            |                                                 |                                    |                                  |                               |   |
| 231.51                                                            |                                               |                                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 1.00                                       |                               | 80.0                                               | 0.06                                              | 1.00                                               | 1.00                                                 | 1.00                                                  | 115                            | 114.1                             | 12070                                                  | 5.00               | 0.12                           |                                          |                                                  |                                      |                                                           |                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                              |                                   |                                        |      | 100%                                                       | 1.00                                                        | cs                                            | 100%                                                         | and a                                   | 75%                                                                                                                         | 12,070                                                        | 45.57                                     | 4,557              |                            | Libraries    |          | WORK MICHS                                          | -                                     |                                                        |                                                      |                                        |                             |                   |                                                 |                                    |                                  |                               |   |
|                                                                   |                                               |                                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 0.99                                       |                               | 0.13                                               | 0.13                                              | 1.00                                               | 1.00                                                 | 1.00                                                  | 107                            | 0.701                             | 008                                                    | 5.00               | 0.18                           |                                          |                                                  |                                      |                                                           |                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                              |                                   |                                        |      | 100%                                                       | 1.00                                                        | cs                                            | 100%                                                         | 199.00                                  | 75%                                                                                                                         | UUB IIII                                                      | 4.65                                      | 465                | (prep. area)               |              |          | Narc. Vault                                         | Vision Visualit                       |                                                        |                                                      |                                        |                             |                   |                                                 |                                    |                                  |                               |   |
|                                                                   |                                               |                                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 1.00                                       |                               | 0.07                                               | 0.07                                              | 1.00                                               | 1.00                                                 | 1.00                                                  | 00%                            | 250.2                             | 3650                                                   | 5.00               | 0,18                           |                                          |                                                  |                                      |                                                           |                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                              |                                   |                                        |      | 100%                                                       | 1.00                                                        | CS                                            | 100%                                                         | ar A s                                  | 75%                                                                                                                         | 3650                                                          | 10.88                                     | 1088               | (prep. area)               |              |          | IV NOOMS                                            | -                                     |                                                        |                                                      |                                        |                             |                   |                                                 |                                    |                                  |                               |   |
|                                                                   |                                               |                                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | CW.U                                       | 10002                         | 0,18                                               | 0,18                                              | 1,00                                               | 1.00                                                 | 1,00                                                  | eq.                            | 7.801                             | 900                                                    | 5,00               | 0.06                           |                                          |                                                  |                                      |                                                           |                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                              |                                   |                                        |      | 100%                                                       | 1.00                                                        | CS                                            | 100%                                                         | 10.00                                   | 75%                                                                                                                         | 900                                                           | 21.45                                     | 858                |                            | Break rooms  |          | Dreak Koom                                          | Banak Boom                            |                                                        |                                                      |                                        |                             |                   |                                                 |                                    |                                  |                               |   |
|                                                                   |                                               |                                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 16.0                                       | ř.                            | 0.15                                               | 0.15                                              | 1.00                                               | 1.00                                                 | 1.00                                                  | 605                            | g BUS                             | 2000                                                   | 0.00               | 0.12                           |                                          |                                                  |                                      |                                                           |                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                              |                                   |                                        |      | 100%                                                       | 1,00                                                        | SO.                                           | 100%                                                         | 1000                                    | 75%                                                                                                                         | 2000                                                          | 0                                         | 2572               | SUDOJ                      |              |          | Buidunta                                            | Dissection                            |                                                        |                                                      |                                        |                             |                   |                                                 |                                    |                                  |                               |   |
|                                                                   |                                               |                                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | an't                                       |                               | 0.07                                               | 0.07                                              | 1.00                                               | 1.00                                                 | 1.00                                                  | - 10                           | /4.8                              | 1090                                                   | 5.00               | 0.06                           |                                          |                                                  |                                      |                                                           |                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                              |                                   |                                        |      | 100%                                                       | 1.00                                                        | cs                                            | 100%                                                         | 100                                     | 75%                                                                                                                         | 10901                                                         | 4.4                                       | 088                |                            | Office space |          | Onices                                              | Ottoon                                |                                                        |                                                      |                                        |                             |                   |                                                 |                                    |                                  |                               |   |
|                                                                   |                                               |                                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 79.0                                       |                               | 00.00                                              | 00.00                                             | 1.00                                               | 1.00                                                 | 1.00                                                  |                                | 2.005                             | 1000                                                   | 10.00              | 0.18                           |                                          |                                                  |                                      |                                                           |                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                              |                                   |                                        |      | 100%                                                       | 1.00                                                        | S3                                            | 100%                                                         | 0.000                                   | 75%                                                                                                                         | DUUT                                                          | 15.8                                      | 790                | quus                       | Wood/metal   |          | doue poot                                           |                                       |                                                        |                                                      |                                        |                             |                   |                                                 |                                    |                                  |                               |   |
|                                                                   |                                               |                                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 0.78                                       |                               |                                                    |                                                   | 1.00                                               |                                                      |                                                       |                                |                                   |                                                        |                    |                                |                                          |                                                  |                                      |                                                           |                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                              |                                   |                                        |      | 100%                                                       |                                                             |                                               | 100%                                                         |                                         | 75%                                                                                                                         | 171                                                           | 44.6                                      |                    | quite                      | Wood/metal   |          | ric                                                 | WinddiandElant                        |                                                        |                                                      |                                        |                             |                   |                                                 |                                    |                                  |                               |   |
|                                                                   |                                               |                                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 1.04                                       |                               |                                                    |                                                   | 1.00                                               |                                                      |                                                       |                                |                                   |                                                        |                    |                                |                                          |                                                  |                                      |                                                           |                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                              |                                   |                                        |      | 100%                                                       |                                                             |                                               | 100%                                                         |                                         | 110                                                                                                                         | 1111                                                          | 3.39                                      |                    |                            | Office space |          | Onices                                              | OHIO                                  |                                                        |                                                      |                                        |                             |                   |                                                 |                                    |                                  |                               |   |
|                                                                   |                                               |                                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 18.0                                       |                               |                                                    |                                                   | 1.00                                               |                                                      |                                                       |                                |                                   |                                                        |                    |                                |                                          |                                                  |                                      |                                                           |                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                              |                                   |                                        |      | 100%                                                       |                                                             |                                               | 100%                                                         |                                         | 75%                                                                                                                         |                                                               |                                           |                    | central                    | Laundry      |          | Rooms                                               | Potentially Critical Z                |                                                        |                                                      |                                        |                             |                   |                                                 | -                                  |                                  |                               |   |

| Building:<br>System Tag/Name:                                                                                             | AHU 1   |                         |                                                     |          |        |              |                       |              |             |                      |           |          |         |           |
|---------------------------------------------------------------------------------------------------------------------------|---------|-------------------------|-----------------------------------------------------|----------|--------|--------------|-----------------------|--------------|-------------|----------------------|-----------|----------|---------|-----------|
| Operating Condition Description:<br>Units (select from pull-down list)                                                    | IP IP   | Peak Cooling Load<br>IP | Load                                                |          |        |              |                       |              |             |                      |           |          |         |           |
| Inputs for System                                                                                                         | Name    | Units                   |                                                     | Sys      | item   |              |                       |              |             |                      |           |          |         |           |
| Floor area served by system<br>Ponulation of area served by system (including diversity)                                  | Ps As   | то 1 <u>4</u>           | 100% diversity                                      |          | 23035  |              |                       |              |             |                      |           |          |         |           |
| Design primary supply fan airflow rate                                                                                    | Vpsd    | dm '                    | frequencies of                                      | ω        | 35,730 |              |                       |              |             |                      |           |          |         |           |
| OA req'd per unit area for system (Weighted average)                                                                      | Ras     | dm/sf                   |                                                     |          | 0.11   |              |                       |              |             |                      |           |          |         |           |
| Inputs for Potentially Critical zones                                                                                     | a de c  | dama                    |                                                     | Γ        | ones   |              | •                     |              |             |                      |           |          |         |           |
| Zone Name                                                                                                                 | Zone ti | tie turns               | Zone title turns purple italic for critical zone(s) |          |        | Offices St   | Storage/Bed<br>Repair | Area         | Break Room  | Conference/T<br>rash | Cart Hold | Corridor | Lobbies | Vestibule |
| Zone Tag                                                                                                                  |         |                         |                                                     |          |        | H            | Ц                     | _            |             |                      |           |          |         |           |
| Space type                                                                                                                |         |                         |                                                     |          | C      | Office space | rooms                 | Office space | Break rooms | Conterencerm         | rooms     | Comidons | nction  | nction    |
|                                                                                                                           | 8       | Select                  | Select from pull-down list                          |          |        |              |                       |              |             |                      |           |          |         |           |
| Floor Area of zone<br>Design population of zone                                                                           | P Z     | 29 07                   | (default value listed: may be overridden)           | vemidden | Т      | 912          | 1858                  | 1315         |             | 1018                 | 0         | 239      | 1143    | 22 68     |
| Design total supply to zone (primary plus local recirculated)                                                             | Vdzd    | đ                       |                                                     |          | П      |              | 1730                  | 1500         |             | 1690                 | 6         | *        | 760     | 098       |
| Local recirc, air % representative of ave system return air                                                               | Ψ       | Dalac                   | Select from pull-down list of leave blank in N/A    | N II NVA | Т      | 75%          | 75%                   | 75%          | 75%         | 75%                  | 75%       | 75%      | 75%     | 75%       |
| Inputs for Operating Condition Analyzed                                                                                   | 2       | R                       |                                                     |          | 10042  | 1008         | 1000                  | 1000         |             | 1000                 | 1000      | 10004    | 10002   | 100%      |
| Air distribution type at conditioned analyzed                                                                             |         | Select                  | Select from pull-down list                          | Γ        |        | cs           | cs                    | CS           | CS          | cs                   | cs        | CS       | CS      | CS        |
| Zone air distribution effectiveness at conditioned analyzed<br>Primary air fraction of supply air at conditioned analyzed | 50      |                         |                                                     |          | Т      | 100%         | 100%                  | 1,00%        |             | 100%                 | 100%      | 1.00     | 1,00    | 100%      |
| Results                                                                                                                   | 8       |                         |                                                     |          |        |              |                       |              |             |                      |           |          |         |           |
| Outdoor air intake required for system                                                                                    |         | đ                       |                                                     | 200      | 0.70   |              |                       |              |             |                      |           |          |         |           |
| Outdoor air per unit floor area                                                                                           | Vot/As  |                         |                                                     |          | 0.28   |              |                       |              |             |                      |           |          |         |           |
| Outdoor air per person served by system (including diversity)<br>Outdoor air as a % of design primary supply air          | Ypd Ypd | dm/p                    |                                                     |          | 18%    |              |                       |              |             |                      |           |          |         |           |
| Detailed Calculations<br>Initial Calculations for the System as a whole                                                   |         |                         |                                                     |          |        |              |                       |              |             |                      |           |          |         |           |
| Primary supply air flow to system at conditioned analyzed<br>UncorrectedOA requirement for system                         | Vou     |                         | = VpdDs = Ros Ps + Ras As                           |          | 35730  |              |                       |              |             |                      |           |          |         |           |
| Uncorrected OA reg/d as a fraction of primary SA                                                                          | Xs      | Mit.                    |                                                     |          | 0.12   |              |                       |              |             |                      |           |          |         |           |
| Initial Calculations for individual zones                                                                                 |         | mmief                   |                                                     |          |        | 0.08         | 0 10                  | 20.0         |             | 0.08                 | 0.13      | 0.04     | 0.02    | 20.0      |
| OA rate per person                                                                                                        | Rpz     | cfm/p                   |                                                     |          |        | 5.00         | 0.00                  | 5.00         |             | 5,00                 | 0.00      | 0.00     | 7.50    | 7.50      |
| Total supply air to zone (at condition being analyzed)                                                                    | Vdz     | dm                      |                                                     |          |        | 1440         | 1730                  | 1500         |             | 1690                 | 1600      | 440      | 760     | 860       |
| Unused OA req'd to breathing zone                                                                                         | Vinz    |                         | = Rpz Pz + Raz Az<br>= Vhz/Fz                       | 0. 10    |        | 77.5         | 223.0                 | 8111         | 68.5        | 315.6                | 76.3      | 14.3     | 325.8   | 215.5     |
| Fraction of zone supply not directly recirc, from zone                                                                    | Fa      |                         | = Ep + (1-Ep)Er                                     | .0       |        | 1.00         | 1.00                  | 1.00         |             | 1.00                 | 1.00      | 1.00     | 1.00    | 1.00      |
| Fraction of zone supply from fully mixed primary air                                                                      | 7 7     |                         | = Ep                                                |          |        | 1.00         | 1.00                  | 1.00         |             | 1.00                 | 1.00      | 1.00     | 1.00    | 1.00      |
| Unused OA fraction required in supply air to zone                                                                         | Zd      |                         | = Voz / Vdz                                         |          |        | 0.05         | 0.13                  | 0.07         |             | 0.19                 | 0.05      | 0.03     | 0.43    | 0.25      |
| Unused OA fraction required in primary air to zone                                                                        | ζþ      |                         | = Voz / Vpz                                         |          |        | 0.05         | 0.13                  | 0.07         |             | 0.19                 | 0.05      | 0.03     | 0.43    | 0.25      |
| Zone Ventilation Efficiency (App A Method)                                                                                | Evz     |                         | = (Fa + FbXs - FcZ) / Fa                            | н).      |        | 1.07         | 66.0                  | 1.05         | 0.91        | 0.94                 | 1.08      | 1.09     | 0.70    | 0.87      |
| System Ventilation Efficiency (App A Method)                                                                              | E       |                         |                                                     |          | 0.70   | 10000        | 1000                  |              |             |                      |           |          | 100     |           |
| Ventilation System Efficiency (Table 6.3 Method)                                                                          | ۳       |                         | = Value from Table 6.3                              |          | 0.72   |              |                       |              |             |                      |           |          |         |           |
| Minimum outdoor air intake airflow<br>Outdoor Air Intake Flow required to System                                          | Vot     | dm                      | = Vou/Ev                                            |          | 6361   |              |                       |              |             |                      |           |          |         |           |
| OA intake req'd as a fraction of primary SA                                                                               | ~       | Caller,                 | = Vot / Vps                                         |          | 0.18   |              |                       |              |             |                      |           |          |         |           |
| Outdoor Air Intake Flow required to System (Table 6.3 Method) Vot                                                         | Vot     | dm                      | = Vou/Ev                                            |          | 6129   |              |                       |              |             |                      |           |          |         |           |
| OA Temp at which Min OA provides all cooling                                                                              | 100     |                         |                                                     |          |        |              |                       |              |             |                      |           |          |         |           |
| OAT below which OA intake flow is @ minimum                                                                               | l       | 1 fact                  | = (()p-()-()-()-()-()-()-()-()-()-()-()-()-()-      |          | c.3+   |              |                       |              |             |                      |           |          |         |           |

# Appendix B

|       |           | AHU Fa | an Power Check          |            |
|-------|-----------|--------|-------------------------|------------|
| AHU   | Total CFM | HP     | Calculated hp allowance | Compliance |
| 1     | 60000     | 125    | 66                      | No         |
| 2     | 35000     | 75     | 38.5                    | No         |
| 3     | 45000     | 100    | 49.5                    | No         |
| 4     | 33000     | 75     | 36.3                    | No         |
| 5     | 35000     | 100    | 38.5                    | No         |
| 6     | 60000     | 200    | 66                      | No         |
| 7     | 46000     | 100    | 50.6                    | No         |
| 8     | 50000     | 150    | 55                      | No         |
| 9     | 35000     | 100    | 38.5                    | No         |
| 10    | 42000     | 100    | 46.2                    | No         |
| 11    | 50000     | 125    | 55                      | No         |
| 12    | 30000     | 75     | 33                      | No         |
| 13    | 30000     | 75     | 33                      | No         |
| 14    | 20000     | 75     | 22                      | No         |
| MUA 1 | 22000     | 40     | 24.2                    | No         |
| 15    | 40000     | 100    | 44                      | No         |
| 16    | 40000     | 100    | 44                      | No         |
| 17    | 20000     | 30     | 22                      | No         |

|       |           | Fa   | n Schedule              |            |
|-------|-----------|------|-------------------------|------------|
| Fan   | Total CFM | hp   | Calculated hp Allowance | Compliance |
| RF-1  | 58000     | 50   | 63.8                    | Yes        |
| RF-2  | 27000     | 20   | 29.7                    | Yes        |
| RF-3  | 32000     | 30   | 35.2                    | Yes        |
| RF-4  | 30000     | 25   | 33                      | Yes        |
| TX-1  | 11400     | 15   | 12.54                   | No         |
| TX-2  | 6200      | 7.5  | 6.82                    | No         |
| TX-3  | 10000     | 10   | 11                      | Yes        |
| TX-4  | 7700      | 7.5  | 8.47                    | Yes        |
| TX-5  | 15000     | 15   | 16.5                    | Yes        |
| TX-6  | 16000     | 15   | 17.6                    | Yes        |
| GX-1  | 2000      | 3    | 2.2                     | No         |
| GX-2  | 7400      | 7.5  | 8.14                    | Yes        |
| GX-3  | 2700      | 3    | 2.97                    | No         |
| GX-4  | 4500      | 5    | 4.95                    | No         |
| GX-5  | 4000      | 5    | 4.4                     | No         |
| GX-6  | 7000      | 7.5  | 7.7                     | Yes        |
| GX-7  | 7000      | 7.5  | 7.7                     | Yes        |
| GX-8  | 3000      | 3    | 3.3                     | Yes        |
| GX-9  | 500       | 2    | 0.55                    | No         |
| IX-1  | 4000      | 7.5  | 4.4                     | No         |
| IX-2  | 1200      | 1    | 1.32                    | Yes        |
| SP-1  | 12000     | 7.5  | 13.2                    | Yes        |
| SP-2  | 18000     | 10   | 19.8                    | Yes        |
| SP-3  | 12000     | 7.5  | 13.2                    | Yes        |
| Kx-1  | 12000     | 20   | 13.2                    | No         |
| KX-2  | 6500      | 10   | 7.15                    | No         |
| KX-3  | 4650      | 5    | 5.115                   | Yes        |
| GX-10 | 7000      | 15   | 7.7                     | No         |
| GX-11 | 4000      | 5    | 4.4                     | No         |
| GX-12 | 4000      | 5    | 4.4                     | No         |
| GX-13 | 4000      | 5    | 4.4                     | No         |
| IX-3  | 6000      | 7.5  | 6.6                     | No         |
| FX1   | 4000      | 5    | 4.4                     | No         |
| FX2   | 600       | 1    | 0.66                    | No         |
| FX-3  | 600       | 1    | 0.66                    | No         |
| GX14  | 500       | 2    | 0.55                    | No         |
| IX-4  | 2000      | 3    | 2.2                     | No         |
| BF01  | 2000      | 1.5  | 2.2                     | Yes        |
| VX-1  | 1000      | 1    | 1.1                     | Yes        |
| FX-4  | 100       | 0.33 | 0.11                    | No         |

# Appendix C

| Location                                                    | Fixture     | Number | Area       | wattage   | Total wattage | power density | Allowable  | Compliant |
|-------------------------------------------------------------|-------------|--------|------------|-----------|---------------|---------------|------------|-----------|
| Critical Core Dationt Doors                                 | F1          | 2      | 200        | 66        | 172           | 0.502         | 0.7        | Vee       |
| Critical Care Patient Room                                  | F5<br>F10   | 1 6    | 290        | 40<br>66  | 172           | 0.593         | 0.7        | Yes       |
|                                                             | F5          | 2      |            | 40        |               |               |            |           |
|                                                             | F14         | 2      |            | 78        |               |               |            |           |
| Nurse Station                                               | F9          | 2      | 393        | 22        | 636           | 1.618         | 1.0        | Yes       |
| OFFICE medial staff                                         | F12         | 2      | 150        | 77        | 154           | 1.027         | 1.1        | Yes       |
| SOILED UTILITY                                              | F22         | 3      | 160        | 66        | 198           | 1.238         | 1.4        | Yes       |
| Telecomm                                                    | F30         | 3      | 171        | 66        | 11286         | 66.000        | 0.6        | Yes       |
| OFFICE t.3101                                               | F12         | 2      | 74         | 77        | 5698          | 77.000        | 1.1        | Yes       |
|                                                             | F1<br>F3    | 2      |            | 66<br>40  |               |               |            |           |
|                                                             | F4          |        |            | 33        |               |               |            |           |
|                                                             | F5          | 1      |            | 40        |               |               |            |           |
|                                                             | F6          | 1      |            | 32        |               |               |            |           |
| Intermediate care                                           | F42         | 1      | 311        | 3         | 280           | 0.900         | 0.7        | NO        |
|                                                             | F1          | 2      |            | 66        |               |               |            |           |
|                                                             | F3          | 1      |            | 40        |               |               |            |           |
|                                                             | F4          | 1      |            | 33        |               |               |            |           |
|                                                             | F5<br>F6    | 1      |            | 40<br>32  |               |               |            |           |
| Private Patient Room                                        | F42         | 1      | 281        | 3         | 280           | 0.996         | 0.7        | NO        |
|                                                             | F35         | 3      |            | 60        |               |               |            |           |
| Lounge & Lockers T.4171                                     | F3          | 2      | 246        | 40        | 260           | 1.057         | 0.8        | NO        |
| Epilepsy Monitoring T.4171B                                 | F16         | 4      | 255        | 80        | 320           | 1.255         | 1.0        | NO        |
| Conference Class                                            | F12         | 3      | 144        | 77        | 231           | 1.604         | 1.3        | NO        |
| Conference/Classroom T.4183                                 | F3          | 8      | 203        | 40        | 320           | 1.576         | 1.3        | NO        |
| On Call T.4183C                                             | F29<br>F32B | 1      | 98         | 40<br>288 | 40            | 0.408         | 1.2        | Yes       |
|                                                             | F35         | 2      |            | 60        |               |               |            |           |
|                                                             | F11         | 1      |            | 8         |               |               |            |           |
| Family Respite T.4195                                       | F3          | 2      | 333        | 40        | 496           | 1.489         | 0.8        | NO        |
|                                                             | F35         | 5      |            | 60        |               |               |            |           |
|                                                             | F5          | 9      |            | 40        |               |               |            |           |
|                                                             | F32         | 5      |            | 66        |               |               |            |           |
| Dialysis                                                    | F3          | 1      | 1131       | 40        | 1031          | 0.912         | 0.7        | NO        |
| Lockers/Lounge T.3135<br>Staff Work                         | F12<br>F10  | 6      | 279<br>429 | 32<br>32  | 192<br>192    | 0.688         | 0.8        | Yes       |
|                                                             | F15B        | 2      | 425        | 98        | 152           | 0.440         | 1.0        | 105       |
|                                                             | F32B        | 1      |            | 368       |               |               |            |           |
| Elevator Lobby                                              | F7          | 10     | 325        | 16        | 724           | 2.228         | 1.1        | NO        |
| Cystocopy Room D.2158                                       | F16         | 8      | 384        | 80        | 640           | 1.667         | 0.7        | NO        |
|                                                             | F29         | 2      |            | 40        |               |               |            |           |
| C                                                           | F24         | 6      | 254        | 186       | 4276          | 5 024         | 1.2        | NO        |
| Conference Room D.2162<br>Male Locker & Shower D.2155, D.21 | F16         | 1      | 254<br>522 | 80<br>100 | 1276<br>700   | 5.024         | 1.3<br>0.6 | NO<br>NO  |
| Wale Locker & Shower D.2155, D.21                           | F1          | 2      | 522        | 66        | 700           | 1.541         | 0.0        | NO        |
|                                                             | F6          | 1      |            | 32        |               |               |            |           |
| Hold/Recovery T.2124                                        | F5          | 1      | 145        | 40        | 204           | 1.407         | 0.8        | NO        |
| Clean Supply T.2153                                         | F13         | 2      | 179        | 100       | 200           | 1.117         | 1.4        | Yes       |
| Elevator Lobby T.1012                                       | F7          | 14     | 258        | 16        | 224           | 0.868         | 1.1        | Yes       |
|                                                             | F15A        | 6      |            | 72        |               |               |            |           |
| Cardiac Rehab D.1231                                        | F9<br>F12   | 2      | 761        | 22        | 620           | 0 929         | 0.0        | NO        |
| Office Supervisor                                           | F12<br>F22  | 2      | 761<br>95  | 77<br>66  | 630<br>66     | 0.828         | 0.8        | NO<br>Yes |
|                                                             | F37         | 4      | 55         | 40        |               | 5.055         | 1.1        | 103       |
|                                                             | F12         | 2      |            | 77        |               |               |            |           |
|                                                             | F5          | 5      |            | 40        |               |               |            |           |
|                                                             | F11         | 1      |            | 8         |               |               |            |           |
| Phlebotomy                                                  | F32         | 5      | 625        | 66        | 852           | 1.363         | 1.5        | Yes       |
| Café T.1159                                                 | F5          | 58     | 1292       | 40        | 2320          | 1.796         | 1.3        | NO        |
| Evam T 1198                                                 | F16<br>F11  | 4      | 150        | 80<br>8   | 370           | 2 1 9 7       | 15         | NO        |
| Exam T.1188                                                 | F11<br>F15A | 4      | 150        | 72        | 328           | 2.187         | 1.5        | NO        |
| Staff Lounge T.1183                                         | F11         | 1      | 165        | 8         | 296           | 1.794         | 0.8        | NO        |
|                                                             | F24A        | 3      |            | 100       |               |               |            |           |
| Education/Conference T.1214                                 | F5A         | 8      | 231        | 40        | 620           | 2.684         | 1.3        | NO        |
|                                                             | F36         | 6      |            | 150       |               |               |            |           |
| Treatment Stations T.1173                                   | F26         | 9      | 956        | 31        | 1179          | 1.233         | 1.5        | Yes       |
| Pharmacy                                                    | F12         | 4      | 255        | 77        | 308           | 1.208         | 1.2        | NO        |
| Tray Assembly T.L101                                        | F39         | 38     | 3234       | 97        | 3686          | 1.140         | 1.2        | Yes       |
| Mechanical                                                  | F30         | 7      | 800        | 66        | 462           | 0.578         | 1.5        | Yes       |
|                                                             | F37         | 13     |            | 40        |               |               |            |           |
| Corridor T.L006                                             | F13         | 1      | 1278       | 100       | 620           | 0.485         | 1.0        | Yes       |